viernes, 23 de abril de 2010

DALTONISMO

El daltonismo - John Dalton, quien lo padecía- es un defecto genético que consiste en la imposibilidad de distinguir los colores (discromatopsia). Aunque ningún daltónico confunde los mismos colores que otros, incluso pertenecientes a la misma familia, es muy frecuente que confundan el verde y el rojo; sin embargo, pueden ver más matices del violeta que las personas de visión normal y son capaces de distinguir objetos camuflados. También hay casos en los que la incidencia de la luz puede hacer que varíe el color que ve el daltónico.
El defecto genético es
hereditario y se transmite por un alelo recesivo ligado al cromosoma X. Si un varón hereda un cromosoma X con esta deficiencia será daltónico, en cambio en el caso de las mujeres sólo serán daltónicas si sus dos cromosomas x tienen la deficiencia, en caso contrario serán sólo portadoras, pudiendo transmitirlo a su descendencia. Esto produce un notable predominio de varones entre la población afectada. La transmisión genética es igual que en la hemofilia excepto en que existen mujeres daltonianas.

Colores Primarios Pigmentales (CMYK)

color primario es un color que no se puede crear mezclando otros colores del gamut en un cierto espacio de colores. Los colores primarios se pueden mezclar entre sí para producir la mayoría de los colores: al mezclar dos colores primarios en partes iguales se produce lo que se conoce como color secundario, y al mezclar un primario con su secundario complementario se produce un color terciario, que está formado por los tres primarios en proporciones de 50+25+25 y se les llama comúnmente tierras.
Tradicionalmente, los colores
rojo, amarillo y azul se consideran los pigmentos primarios del mundo del arte. Sin embargo, esto no es técnicamente cierto, o al menos es impreciso. Los tres colores primarios de la pigmentación son el magenta, el amarillo cadmio y el cian. (Cuando se dice que los colores primarios de la pigmentación son el "rojo, amarillo y azul", "rojo" es una forma imprecisa de decir "magenta" y "azul" es una forma imprecisa de decir "cian"). En realidad, el azul y el rojo son pigmentos secundarios, pero son colores primarios de la luz, junto con el verde.

Colores primarios de la Luz (RGB)

  • Son los colores que se clasifican según los conos que nuestros ojos pueden captar. Biológicamente nuestros ojos tienen unas células denominadas conos, Existen conos de 3 tipos, unos que detectan Rojos (sobre longitudes de onda de 700-600 nm), otros para los Verdes (Longitudes de onda de 550 nm) y otros para los azules (que detectan radiaciones de 450-400 nm) De la combinación de dos de ellos salen los colores primarios de la pigmentación (Cyan, Magenta y amarillo), siempre que se utilicen dos, ya que la unión de los tres colores en proporciones iguales forma el blanco, y la ausencia de los mismos forma el negro, ya que el negro es lo contrario a luz, oscuridad
    El RGB (Red, Green, Blue) formarían los colores primarios de la luz, ya que con ellos, se pueden representar todos los colores, siendo Negro la oscuridad absoluta y blanco, la claridad absoluta y la mezcla de estos 3 colores...
    La mezcla de los colores primarios da:
  • Rojo + Verde= Amarillo
  • Verde + Azul= Cyan
  • Rojo + Azul= Magenta
    Estos colores son basados en que el color puro de la luz es blanca, al dividirse en un prisma, se separan las distintas longitudes de onda que lo forman.
    Los colores en sí, son una forma de interpretar las distintas longitudes de onda de la radiación electromagnética dada la frecuencia de movimiento de los fotones.

COLORES BINARIOS PRIMARISO COMPLEMENTARIOS ETC.

Colores Binarios: son los que se consiguen mediante la mezcla de dos colores primarios (rojo, amarillo,azul). Hay tres colores secundarios: naranja (amarillo y rojo), verde (amarillo y azul), violeta (rojo y azul); en proporción de 1a 1
Se considera color primario al color que no se puede obtener mediante la mezcla de ningún otro.
Estas teorías fueron desarrolladas por la Escuela Francesa de pintura en el siglo XVIII, y se siguen aplicando en las escuelas de pintura y en el
diseño gráfico. Esto es lo que se conoce como Modelo RYB de color, ya obsoleto e impreciso.
Posteriormente, tras el desarrollo del
impresionismo en el siglo XIX y con el desarrollo de la teoría ondulatoria de la luz se encontraron pistas para determinar con mayor precisión los colores primarios, de tal manera que se encontró que ni el azul ni el rojo (color) son colores primarios, puesto que éstos pueden obtenerse de la mezcla de varios tintes, siendo los tonos exactos el color cercano al azul cian y el tono cercano al rojo magenta, surgiendo de esta manera el modelo de color CMYK. Al mismo tiempo, con la difusión de la fotografía y del cine se encontró que la luz, al mezclarse selectivamente, obtenía un modelo de color diferente al de la mezcla de pinturas y recíproco a éste, por lo cual se definió otro modelo de color, el RGB o RVA en español.
Lo cual llevó a dos tipos distintos de color, los Emisores de Luz y los Pigmentales

DESCOMPOSICION DE LA LUZ BLANCA

  • La luz blanca o visible es el conjunto de todas las longitudes de onda del espectro visible. Puede descomponerse en luces monocromáticas, siempre que atraviese algún obstáculo que obligue a las diferentes ondas que constituyen la luz blanca a viajar a velocidades diferentes, por ejemplo un prisma transparente. El resultado es el arco iris o espectro de la luz blanca.
    La descomposición de la luz blanca en los diferentes
    colores que la componen, data del siglo XVIII, debido al físico, astrónomo y matemático Isaac Newton.
    La luz blanca se descompone en estos colores principales:
  • Rojo. El color que sufre la menor desviación.
  • Violeta. El color que sufre la mayor desviación
    Esto demuestra que la luz blanca está constituida por la superposición de todos estos colores. Cada uno de los cuales sufre una desviación distinta ya que el índice de refracción de, por ejemplo, el vidrio es diferente para cada uno de los colores. Si la luz de un color específico, proveniente del espectro de la luz blanca, atravesara un prisma, esta no se descompondría en otros colores ya que cada color que compone el espectro es un color puro o
    monocromático.

Teoría del color. Naturaleza del color

Podemos ver las cosas que nos rodean porque La Tierra recibe la luz del Sol. Nuestra estrella madre nos inunda constantemente con su luz, y gracias a ella es también posible la vida en nuestro planeta. La luz del Sol está formada en realidad por un amplio espectro de radiaciones electromagnéticas de diferentes longitudes de onda, formando un espectro continuo de radiaciones, que comprende desde longitudes de onda muy pequeñas, de menos de 1 picómetro (rayos cósmicos), hasta longitudes de onda muy grandes, de más de 1 kilómetro.
El ser humano tan solo es capaz de visualizar un subconjunto de ellas, las que van desde 380 (violeta) a 780 nanómetros (rojo), como podemos apreciar claramente si la hacemos pasar por un prisma, efecto descubierto por Newton.
Cada longitud de onda define un color diferente (colores de emisión). La suma de todos los colores (longitudes de onda) da como resultado la luz blanca, siendo el color negro u oscuridad la ausencia de colores.
Si una vez descompuesta la luz solar en sus longitudes de onda constituyentes volvemos a juntarlas con otro prisma, volveremos a obtener la luz blanca.

QUE ES EL COLOR Y SU NATURALEZA

El color es una percepción visual que se genera en el cerebro al interpretar las señales nerviosas que le envían los fotorreceptores de la retina del ojo y que a su vez interpretan y distinguen las distintas longitudes de onda que captan de la parte visible del espectro electromagnético.
Es un fenómeno
físico-químico asociado a las innumerables combinaciones de la luz, relacionado con las diferentes longitudes de onda en la zona visible del espectro electromagnético, que perciben las personas y animales a través de los órganos de la visión, como una sensación que nos permite diferenciar los objetos con mayor precisión.
Todo cuerpo iluminado absorbe una parte de las
ondas electromagnéticas y refleja las restantes. Las ondas reflejadas son captadas por el ojo e interpretadas en el cerebro como colores según las longitudes de ondas correspondientes. El ojo humano sólo percibe las longitudes de onda cuando la iluminación es abundante. A diferentes longitudes de onda captadas en el ojo corresponden distintos colores en el cerebro.
Con poca luz se ve en
blanco y negro. En la denominada síntesis aditiva (comunmente llamada "superposición de colores luz" El color blanco resulta de la superposición de todos los colores, mientras que el negro es la ausencia de color. En la síntesis sustractiva (mezcla de pinturas, tintes, tintas y colorantes naturales para crear colores)El blanco solo se da bajo la ausencia de pigmentos y utilizando un soporte de ese color y El negro es resultado de la superposición de los colores Cian, magenta y amarillo.
La
luz blanca puede ser descompuesta en todos los colores (espectro) por medio de un prisma. En la naturaleza esta descomposición da lugar al arco iris.

CUERPOS ILUMINDADOS

  • Cuerpos luminosos o iluminados: son cuerpos luminosos aquellos que pueden producir luz propia (lámpara, Sol) y son cuerpos iluminados aquellos que reciben luz de fuentes lumínicas para ser visibles (mesa, silla, birome).
  • Cuerpos transparentes, opacos y traslúcidos: son cuerpos transparentes aquellos que cuando la luz pasa a través de ellos prácticamente no se altera (agua pura, aire); son cuerpos opacos aquellos que no permiten el paso de la luz, (aunque no hay opacos en absolutos ya que si se reduce a laminas adquieren características traslucidas) y son cuerpos traslucidos aquellos que si bien permiten el paso de la luz no permiten precisar la forma de los objetos a través de ellos).
  • Propagación rectilínea de la luz: el hecho de que la luz se propaga en "línea recta" (más adelante veremos más profundamente cual es la forma de propagación de la luz) es muy fácilmente comprobable, solo vasta con encender una linterna y ver como el haz de luz viaja a través de una línea recta.

FUENTES LUMINOSAS

Las fuentes luminosas son todas aquellas que emiten radiaciones visibles para el ojo humano. Pueden dividirse en naturales y artificiales.Una lámpara es una fuente de luz artificial que funciona como un transformador de energía, transformando la energía eléctrica en energía espectral visible (luz) y no visible (calor y flujo no luminoso) Este proceso se mide a través de la eficiencia de la lámpara, que es una relación: lúmenes emitidos por watts consumidos

INSTRUMENTOS OPTICOS

Un instrumento óptico sirve para procesar ondas de luz con el fin de mejorar una imagen para su visualización, y para analizar las ondas de luz (o fotones) para determinar propiedades características.
Otra clase de instrumentos ópticos es utilizada para analizar las propiedades de la luz o de materiales ópticos. Entre ellos se incluyen:

3 PRINCIPALES CARACTERISTICAS DE LUZ

  • Reflexión. Cuando los rayos de luz llegan a un cuerpo en el cual no pueden continuar propagandose, salen desviados en otra dirección, es decir, se reflejan. La forma en que esto ocurre depende del tipo de superficie sobre la que inciden y del angulo que forman sobre la misma.
    Así las superficies pulidas reflejan de una forma regular la mayor parte de las radiaciones luminosas que les llegan mientras que las superficies rugosas actúan como si estuvieran formadas por infinidad de pequeñas superficies dispuestas irregularmente y con distinta orientación, por lo que las direcciones de los rayos reflejados son distintas. La mayor parte de lo que nosotros vemos es luz que ha sido reflejada por los objetos situados en nuestro entorno. Por tanto los objetos reciben directamente la luz del Sol, reflejandola o difundiendola hacia otros objetos que se encuentran en la sombra.
  • Absorción. Existen superficies y objetos que absorben la mayor parte de las radiaciones luminosas que les llegan. Estos objetos se ven de color negro. Otros tipos de superficies y objetos, absorben sólo unas determinada gama de longitudes de onda, reflejando el resto.
    Esto sucede por ejemplo con los pigmentos que se utilizan en las técnicas de pintura. Por ejemplo un pigmento rojo absorbe longitudes de onda cortas pero refleja un determinado rango de longitudes de onda larga, cuyo pico se centra alrededor de los 680 nm, por lo que se percibe como rojo. Como veremos más adelante, las células sensibles a la luz de la retina, los fotorreceptores, contienen pigmentos visuales que utilizan esta propiedad para generar cambios en su potencial de membrana. Distintos tipos de pigmentos a nivel de los fotorreceptores dan lugar a la visión en color propia de muchos animales.
  • Refracción. El cambio de dirección que sufren los rayos luminosos al pasar de un medio a otro, donde su velocidad es distinta, da lugar a los fenómenos de refracción. Así si un haz de rayos luminosos incide sobre la superficie de un cuerpo transparente, parte de ellos se reflejan mientras que otra parte se refracta, es decir penetran en el cuerpo transparente experimentando un cambio en su dirección de movimiento. Esto es lo que sucede cuando la luz atraviesa los medios transparentes del ojo para llegar hasta la retina.

VELOCIDAD DE LA LUZ

La rapidez de la luz en el vacío es por definición una constante universal de valor 299.792.458 m/s[2] [3] (suele aproximarse a 3·108 m/s), o lo que es lo mismo 9,46·1015 m/año; la segunda cifra es la usada para definir al intervalo llamado año luz.
Se denota con la letra c, proveniente del
latín celéritās (en español celeridad o rapidez), y también es conocida como la constante de Einstein.
La rapidez de la luz fue incluida oficialmente en el
Sistema Internacional de Unidades como constante el 21 de octubre de 1983, pasando así el metro a ser una unidad dada en función de esta constante y el tiempo.
La rapidez a través de un medio que no sea el "
vacío" depende de su permitividad eléctrica y permeabilidad magnética y otras características electromagnéticas. En medios materiales, esta rapidez es inferior a "c" y queda codificada en el índice de refracción. En modificaciones del vacío más sutiles, como espacios curvos, efecto Casimir, poblaciones térmicas o presencia de campos externos, la rapidez de la luz depende de la densidad de energía de ese vacío.

TEORIAS SOBRE LA NATURALEZA DE LA LUZ

Los antiguos filósofos ya conocían algunos hechos sobre la propagación de la luz. Así se atribuye a Euclides el descubrimiento de las leyes de la reflexión de la luz (300 ane) Es a mediados del XVII cuando aparecen casi conjuntamente dos teorías acerca de la naturaleza de la luz. Teoría CORPUSCULAR (1666) y teoría ONDULATORIA (1678)
TEORIA CORPUSCULAR(NEWTON) Supone que la luz está compuesta por una serie de corpúsculos o partículas emitidos por los manantiales luminosos, los cuales se propagan en línea recta y que pueden atravesar medios transparentes, y pueden ser reflejados por materias opacas. Esta teoría explica: La propagación rectilínea de la luz, la refracción y reflexión. Esta teoría no explica: Anillos de Newton (Irisaciones en las láminas delgadas de los vidrios) Este fenómeno lo explica la teoría ondulatoria y lo veremos más adelante. Tampoco explica los fenómenos de interferencia y difracción.
TEORIA ONDULATORIA (HUYGENS) Esta teoría explica las leyes de la reflexión y la refracción , define la luz como un movimientoondulatorio del mismo tipo que el sonido. Como las ondas se trasmiten en el vacío, supone que las ondas luminosas necesitan para propagarse un medio ideal, el ETER, presente tanto en el vacío como en los cuerpos materiales. Esta teoría tiene una dificultad fundamental que es precisamente la hipótesis del éter. Tenemos que equiparar las vibraciones luminosas a las vibraciones elásticas transversales de los sólidos, y no transmitiendo por tanto vibraciones longitudinales. Existe, pues, una contradicción en la naturaleza del éter, ya que por un lado debe ser un sólido incompresible y por otro no debe oponer resistencia al movimiento de los cuerpos. (Nota: Las ondas transversales solo se propagan en medios sólidos) Esta teoría no fue aceptada debido al gran prestigio de Newton. Tuvo que pasar más de un siglo para que se tomara nuevamente en consideración la "Teoría Ondulatoria". Los experimentos de Young (1801) sobre fenómenos de interferencias luminosas, y los de Fresnel sobre difracción fueron decisivos para que se tomaran en consideración los estudios de Huygens y para la explicación de la teoría ondulatoria. Fue también Fresnel (1815) quien explicó el fenómeno de la polarización transformando el movimiento ondulatorio longitudinal, supuesto por Huygens, en transversal. Existe, sin embargo, una objeción a esta teoría, puesto que en el éter no se puede propagar la luz por medio de ondas transversales, ya que éstas solo se propagan en medios sólidos.
TEORIA ELECTROMAGNETICA (MAXWELL 1865) Descubre que la perturbación del campo electromagnético puede propagarse en el espacio a una velocidad que coincide con la de la luz en el vacío, equiparando por tanto las ondas electromagnéticas con las ondas luminosas. Veinte añ�os después Hertz comprueba que las ondas hertzianas de origen electromagnético tienen las mismas propiedades que las ondas luminosas, estableciendo definitivamente la identidad de ambos fenómenos.
Objeciones a ésta teoría:
No se da explicación a:
Fenómenos por absorción o emisión.
Fenómenos fotoeléctricos.
Emisión de luz por cuerpos incandescentes.
Y por lo tanto es necesario volver a la teoría corpuscular, como hizo Planck en 1900.
TEORIA DE LOS CUANTOS (PLANCK 1900) Esta teoría establece que los intercambios de energía entre la materia y la luz, solo son posibles por cantidades finitas. (cuantos) átomos de luz, que posteriormente se denominarán fotones. Esta teoría tropieza con el inconveniente de no poder explicar los fenómenos de tipo ondulatorio: Interferencias, difracción, .... Nos encontramos nuevamente con dos hipótesis contradictorias, la teoría electromagnética y la de los cuantos.
MECANICA ONDULATORIA (DE BROGLIE 1924) Auna la teoría electromagnética y la de los cuantos, herederas de la ondulatoria y corpuscular respectivamente, evidenciando la doble naturaleza de la luz. Esta teoría establece así la naturaleza corpuscular de la luz en su interacción con la materia (procesos de emisión y absorción)y la naturaleza electromagnética en su propagación.

LUZ

La luz (del latín lux, lucis) es la clase de energía electromagnética radiante que puede ser percibida por el ojo humano. En un sentido más amplio, el término luz incluye el rango entero de radiación conocido como el espectro electromagnético.
La ciencia que estudia las principales formas de producir luz, así como su control y aplicaciones, se denomina
óptica.
La luz es una radiación que se propaga en forma de ondas. Las ondas que se pueden propagar en el vacío se llaman ONDAS ELECTROMAGNÉTICAS. La luz es una radiación electromagnética.

DIVISION DE LA OPTICA

1 OPTICA GEOMETRICA
En
física, la óptica geométrica parte de las leyes fenomenológicas de Snell (o Descartes según otras fuentes) de la reflexión y la refracción. A partir de ellas, basta hacer geometría con los rayos luminosos para la obtención de las fórmulas que corresponden a los espejos, dioptrio y lentes (o sus combinaciones), obteniendo así las leyes que gobiernan los instrumentos ópticos a que estamos acostumbrados.
La óptica geométrica usa la noción de rayo luminoso; es una aproximación del comportamiento que corresponde a las
ondas electromagnéticas (la luz) cuando los objetos involucrados son de tamaño mucho mayor que la longitud de onda usada; ello permite despreciar los efectos derivados de la difracción, comportamiento ligado a la naturaleza ondulatoria de la luz.
Esta aproximación es llamada de la
Eikonal y permite derivar la óptica geométrica a partir de las ecuaciones de Maxwell.
2 OPTICA FISICA
La óptica física es la rama de la
óptica que toma la luz como una onda y explica algunos fenómenos que no se podrían explicar tomando la luz como un rayo. Estos fenómenos son:
Difracción: es la capacidad de las ondas para cambiar la dirección alrededor de obstáculos en su trayectoria, esto se debe a la propiedad que tienen las ondas de generar nuevos frentes de onda.
Polarización: es la propiedad por la cual uno o más de los múltiples planos en que vibran las ondas de luz se filtra impidiendo su paso. Esto produce efectos como eliminación de brillos.

QUE ESTUDIA LA OPTICA

La óptica es la rama de la física que estudia el comportamiento de la luz, sus características y sus manifestaciones. Abarca el estudio de la reflexión, la refracción, las interferencias, la difracción, la formación de imágenes y la interacción de la luz con la materia. Estudia la luz, es decir como se comporta la luz ante la materia.

miércoles, 21 de abril de 2010

presentacion

este es mi blog
escribire sobre el estudio de la optica como proyecto de mi escuela...